Posts Tagged ‘Laboratory’

I’ve heard so many times the saying that curiosity killed the cat. In French we say that quality is a naughty defect (generally to kids, in order to discourage it). That’s utter-bullshit, pardon my English. Curiosity saved men. It’s because we’re curious that we founds ways to compensate our tiny constitution, our ridiculous speed, our feeble health and so on. And it’s because we’re curious that we invented a special job: researcher. People devoted for the sole purpose of satisfying the curiosity of the society, and/or their own.

In return, the very minimum that these researchers can do, it tell the results of their investigations. Otherwise, that’s a bit unfair, no? It’s called staying in the Ivory Tower, the tower where intellectuals selfishly do their work, while staying disconnected from the society. We get paid by the society to find stuff, and we don’t tell what we find? Apart from fueling the lunatic nature of conspiracy theorists, who think every researcher in the world participate covertly to global machinations, this is just failing to do the full spectrum of our very responsibility as researchers. Every researcher should do popularization work, be it public conferences, press interviews, books or documentaries or just press release and let the journalists communicate for them. That’s the fair thing to do, and that’s also a very good exercise to be able to explain complicated concepts, and ultimately also to get more people interested in our discipline.

With that in mind, I’ve been popularizing quite a lot, since my very early carrier. I’ve written a piece about my thesis research during my first year of PhD, against the advice not to do so of my supervisor, who thought – like almost everybody else at the time – that popularization was the realm of bad scientists: those who where not sufficiently strong in research to stay with their peers went to shine with the public, pretending to be smarter than their colleagues knew them to be. Now I’ve written more, from articles to books, initiated several documentaries, participated in several others, given conferences in front of many different audiences, including about every age of school children, and interviews to radio, tv channels and written press. And apart from one or two exceptions, every single one has been a great experience.

In some countries, like my own, the public tends to think that researchers are at best immature society parasites who work on useless questions just because they can. In others, like the USA, they tend to have a better reputation, sometimes up to selfless saviors of the society. Regardless of the general view of our profession, communicating with the public is profitable for the public, is profitable for us and is profitable for our profession.

Of course, when  I say communicate to the public, don’t go telling them all everything. We want to keep all our global conspiracies safely concealed, otherwise our secret plot to take over all the governments of Earth might be delayed…

Communication

yes, better than Starwars and World of Warcraft together, the wars of ants. Last year in our lab, we set up wars between different species, among the most aggressive in the world.

I’m sure you can imagine. Monstrous armies of millions of Unsullied warriors, impervious to danger, dedicated to the death, working together with the efficacy given by millions of years of evolution, all entirely bent to one single purpose, destroying the other armies. I’m certain to are picturing this. Well, you are picturing it wrong, you immature brutes. So, what did we do and why did we do it?

It was a time when a Ph D student (Cleo Bertelsmeier) was studying the effect of climate change on invasive ants. I’ve told you already why we study invasive ants. If you’ve missed it, you can read it here. The first part of the PhD thesis was to build up species distribution models to try and predict where invasive ants would find favorable regions with climate change (ants are very sensitive to climate, and milder winters may mean higher probability of establishment). And the result was that some of the most problematic invasive ant species were predicted to arrive at the same place in several regions. And because the most obvious characteristics of all these invasive ants is that they are extremely efficient at removing other arthropods, starting with local ant species, we naturally wondered what would happen if two of such Hun armies were to clash in newly invaded territories. Or in other words, is there among these tiny berserk beasts one that would take over all the others (and the rest of the world with it).

So we set up colonies of four of the worst of the worst. These were the invasive garden ant Lasius neglectus, the Argentine ant Linepithema humile, the big-headed ant Pheidole megacephala and the electric ant Wasmannia auropunctata. The experiment set up by Cleo was not really the wars you pictured, but they were enough for our purposes: boxes with colonies of 300 workers and one queen, put into contact by a tiny tube, and days of counting the dead and the survivors. And these taught us a lot. First, that the experiments of one worker versus another in a Petri dish – often set up to establish dominance hierarchies among ant species – are not well suited, because some ants species need other workers to kill others. Some ants hold the enemy while it is being cut into pieces, and you can’t do that when you’re alone, and you’ll systematically lose in duels but not necessarily a battle. It also mean that classical experiments of 10 vs 10 workers in a Petri dish are also problematic, because the lack of natural conditions can bias the results. These ants are very stressed, more or less forced to fight, and with no territory, nest or queen to defend (which was not the case in our experiment). Last, it taught us that ants adapt their strategies according to their opponents. Some species that are very aggressive and kill everything were less so when confronted to potentially stronger adversaries. Some even escaped or feigned death. And some raided the other colonies D-Day style improved with chemical weaponry, with many losses but an eventual conquest while some others remained in their strongholds and privileged defense. And eventually it taught us that when you increase complexity, for example by putting all four species together, you increase… well complexity. Here, the species that systematically lost against any of the three others won half the time when all four were fighting simultaneously.

Now I’m sure you’d like to know who was the meanest of the four. The tiny electric ant, so named for its terribly painful sting? Or the scary big-headed ants, which soldiers can cut in two any of the other species? Well, I guess that to know that you’ll have to read the paper (and perhaps that one too about their strategies)… Yes, I know, I’m mean. That’s what the ants say too.

Marvel-Ant-Man-Banner-Poster

Of course, the best fighter of all remains the Ant-man

When I was a PhD student, a researcher that I admired once told me that half the research in labs is done in corridors and coffee rooms. Of course he didn’t mean that the dire restrictions of lab and office spaces faced by academia nowadays force half of us to install their benches or computers there. Even in France. What he meant was that in academia the social aspect is very important, and that social gatherings, such as coffee breaks, are not to be neglected because they are not just breaks from work and coffee loading. They are more than that. They are crucial because that’s where scientists chat. They of course sometimes chat about mundane topics, such as whether Schrödinger’s cat is male or female or both, or why 42 and not 43, or 41. But they most of the time talk about their work. Yes, most of us are in the latest stage of nerdiness and can’t be saved anymore.

And chatting about studies is really important for two things. Well, three, because it also gives you information about what the guy on the desk next to you is spending his days on (beside Facebook), which can be interesting, if not utterly fascinating (sometimes). But regarding your own research progress it’s important because it forces you to synthesize and to structure your thoughts about your work (the whole of it, or a more specific problem). This effort alone can benefit you a lot. Sometimes it will help you to get unstuck or to spot a weak link in your reasoning; sometimes it will just help you see more clearly your problem and go forward more easily. The second reason is that you can get feedback that can in many times be useful, be it from someone close to your topic or on the contrary rather remote.

With this in mind, we have set up three types of regular meetings in our group (in addition to the boring ones). The first one is the SemiBeer. We’ve talk about it here. But in a nutshell, it’s a Journal Club with two twists: 1/ we treat unconventional papers, such as funny ones, articles about controversies or papers about carrier and 2/ we drink beer (or other stuff, with peanuts and crackers, what we call apéro in France, a key cultural tradition that every other country on Earth should copy).

The second type of socio-scientific meeting is the Teameeting. That’s where we discuss problems encountered by a team member. We just gather around a table with a computer and sheets of paper and someone presents where (s)he’s stuck in her/his topic and others try to give suggestions. A brainstorming session set up at teatime, so with homemade cookies and similar goodies, hence the super pun I’m so proud of: Tea-meeting / Team-eating. Oh God, am I good when it comes to food…

The last type of meetings that we have is the Breakfast Club. As you may have guessed (I hope for you), this one is in the morning, very very early (9 am) and we discuss about carrier. Students ask a question, such as how to best find a supervisor for a PhD or how to balance work and personal life, and the postdocs and PIs give them their famed wisdom. And we eat croissants and other morning delights with tea and coffee and good ambiance.

So if I count well, we’ve been very serious scientifically, because we’ve covered breakfast, tea time and apéro. And of course everyday we all have lunch together at the canteen of the university. Now I just need to do something about Elevenses, and we’d be one step closer to the Hobbits.

LabFoodYes, that’s my lab and yes I told them not to eat while doing experiments

 

Nuclear power recommended by environmental scientists? Probably sounds like a bomb, but read this.

As conservation scientists concerned with global depletion of biodiversity and the degradation of the human life-support system this entails, we, the co-signed, support the broad conclusions drawn in the article Key role for nuclear energy in global biodiversity conservation published in Conservation Biology (Brook & Bradshaw 2014).

Brook and Bradshaw argue that the full gamut of electricity-generation sources—including nuclear power—must be deployed to replace the burning of fossil fuels, if we are to have any chance of mitigating severe climate change. They provide strong evidence for the need to accept a substantial role for advanced nuclear power systems with complete fuel recycling—as part of a range of sustainable energy technologies that also includes appropriate use of renewables, energy storage and energy efficiency. This multi-pronged strategy for sustainable energy could also be more cost-effective and spare more land for biodiversity, as well as reduce non-carbon pollution (aerosols, heavy metals).

Given the historical antagonism towards nuclear energy amongst the environmental community, we accept that this stands as a controversial position. However, much as leading climate scientists have recently advocated the development of safe, next-generation nuclear energy systems to combat global climate change (Caldeira et al. 2013), we entreat the conservation and environmental community to weigh up the pros and cons of different energy sources using objective evidence and pragmatic trade-offs, rather than simply relying on idealistic perceptions of what is ‘green’.

Although renewable energy sources like wind and solar will likely make increasing contributions to future energy production, these technology options face real-world problems of scalability, cost, material and land use, meaning that it is too risky to rely on them as the only alternatives to fossil fuels. Nuclear power—being by far the most compact and energy-dense of sources—could also make a major, and perhaps leading, contribution. As scientists, we declare that an evidence-based approach to future energy production is an essential component of securing biodiversity’s future and cannot be ignored. It is time that conservationists make their voices heard in this policy arena.

The list of signatories can be found here and here. Now, please, do read the article of Brook & Bradshaw before getting emotional and all. Now I’m waiting for the fallout…

nuclearprogramIllustration.sellingnukepower

 

It may seem odd that someone often known as a conservation biologist would promote and defend basic ecology. Yet, I do. I do because I feel basic ecology needs promoting and defending. In a time when environmental crises are so worrying (at least for those who are aware of them), it is normal that people, including scientists, would want to favour applied ecology. That is, after all, a science directly committed to solving environmental issues, such as biodiversity loss, ecosystem degradations, food security, emerging diseases, climate change and the likes.

As a result, the trend has been in the past decades to increasingly favour applied ecology; and because budgets are not extensible, that has been at the expense of basic ecology.

Yet, there are many reasons why basic ecology – or fundamental ecology – is important. I will not enumerate them all here, you’ll probably want to read the article I just wrote, with 4 other authors in the last issue of Trends in Ecology and Evolution, here if you subscribe, for for free here*. But I can still pick up a few, just to arouse your curiosity, because I’m sure you didn’t think of them all, and several might surprise you a bit.

And then not! Go read the paper, I’m feeling lazy today and I’ve been told to keep my posts shorts. But of course, you can use this blog to tell me why you disagree. Because, unlike applied ecology, debate is fundamental in science.

ThermodynamicsOfEcology
by Ari Weinkle

* you can download the paper from the link on this post or directly from my lab web page here. I shouldn’t offer it like that, but I am in the process to pay for the Open Access and I don’t want to wait until it is available for readers to access it easily.

In a very interesting Science article a few weeks ago, Georgina Mace highlighted how Conservation Biology has been going through phases in the way of seeing the conservation of nature. There are many interesting aspects to this paper, starting by the evolution of the place of people in conservation: nature for itself, nature despite people, nature for people and then nature and people. An aspect that interests me a lot and that has been the focus of much debate in the past is whether we should maintain theses species oriented conservation programmes, when what really matters is habitats, or ecosystems. True, conserving species is meaningless if they don’t have a habitat to live in. Also, conserving ecosystems allows to protect many, many species together, as well as the processes and interactions among them. Plus, money is a finite resource, so conserving species per species means choosing which ones are going to be the target of conservation programmes, and which ones are going to be let for extinction; a modern version of war-wounded triage.

This prompted a famous naturalist to call for the end of pandas, because we are wasting millions of conservation money on them, probably hopelessly, while those millions would better serve entire communities of (less charismatic) species. Dude, he even said that he would eat the last panda if he could have back the money spent on them, to use for more sensitive purposes. Despite the questionable culinary taste (the guy is British), he has a very valid point. The only reason the pandas are getting so much money for conservation, despite being probably doomed since decades, is that they are cute, large mammals. They rock, so we can’t really abandon them, can we? Or at least we can’t appear like we’ve not attempted everything, even if it means performing mouth-to-mouth resuscitation attempts for thirty more years? Nah. Those millions could have already saved species that stand a chance, or protect entire biodiversity hotspots.

PandasRock

You can’t deny that pandas rock

 True. But there is another aspect to this problem, that I never see pointed out but that I consider essential emphasizing. Pandas rock. (yeah, I know I said it already). Therefore, people love them. They watch vines of them sneezing adorably on their babies or crashing stupidly from slides, they make funny commercial, video games and cartoons out of them or even disguise their dogs in panda-looking absurdities. And because of that, people don’t want to see them erased from the surface of the Earth. And I don’t blame them, even if pandas have become too lame to reproduce. People don’t want to give up this lost fight, because people care (a tiny bit) about Nature and biodiversity. And people care (a tiny bit) because they had a strong symbol in front of them. Had the WWF given them a slug or a spider as a symbol, I doubt it would have worked as well. Had they rather chosen as a symbol the beautiful hilly bamboo forests that are the habitat of pandas, people wouldn’t even have looked up from their smart phone for a second. The panda raises awareness. It plays a crucial role in conservation, and is it therefore justified to spend millions to save it. And to advertise this expenditure broadly.

So you see, it’s true that it’s unfair that charismatic species get most of the attention in Conservation Biology, but we still need to realise that if it weren’t for pandas, tigers, gorillas and dolphins, nobody would give a damn (even a tiny bit) about conserving nature. That’s life. Just like the pretty cheerleaders are the only reason Europeans could ever be interested in American Football. Unfair, but sheer reality.

Joy

 

Just a short note to inform you of the results of the BNP Paribas public vote: we won!
for those of you who followed the unbearable suspens of this sage, here are the figures:
FATES = 329
CPATEMP : 126
SOCLIM = 597
INVACOST = 4463
APT = 3361

So thank to you (yes, you), our research group is awarded an additional 50.000€ for communication purposes. We will use this money in two major ways. We will first buy the design and construction of an interactive web site to explain our results to the public, and allow them (yes, you again) to check that we are not just playing angrybirds all day long, ask questions and request all the analyses they want. We will also use this money to hire a communication officer that will be in charge of this web site, of dealing with emails from the public (i.e. replying to insulting ones and forwarding me the nice ones), of writting media memos and of many other things that we scientists are too clumsy to do ourselves.
Anyways, this is an opportunity to once more thank you all for your votes!
From the hysteria in France and the US to the delirium in Indonesia and Brazil and the frenzy in Australia and China, we now know we can count on hordes of devoted followers, ready to the craziest things for us, even sometimes read this blog.

 

 

The Fundation BNP Parisbas selected 5 scientific programmes on climate change and will give 50 000 € (that’s US$ 62,000) to one selected by the public, for a communication project on their scientific programme. This is why we need you to vote for our project: InvaCost.

InvaCost will look at the impact on invasive insects, when climate change allows them to invade regions that are now too cold for them, but that will warm up in the coming decades. These include the red imported fire ant, the predatory Asian wasp, the disease carrying tiger-mosquito, and many others that are among the worst invaders worldwide. InvaCost is described a bit in an earlier post, here.

Our communication project is really different from anything that has been done before, and very probably different from the four other projects. In addition to building an interactive website to communicate with the public, show and explain our results and answer your questions, we will inaugurate a new type of citizen science, or participatory science: the public will be able to select some of the 20 invasive species we will study in InvaCost, from a large list we will compile. You will also be able to ask us to do specific analyses, for example “will Argentine ants be able to invade the UK?” or “where will the Formosan termite invasion expand in the USA” or “Is the malaria mosquito likely to reach my city and when?”. We will then collect the data, build and run the mathematical models, analyse the outputs and show and explain the results.

In a word, you will chose the subject and the questions, and we will do science for you. The money will be used to design and run the web site and to hire staff to interact with the public and make specific analyses during the four years of InvaCost. The communication project is described here.

So if you want to see that happen, it’s quite simple, vote for our project, by going here. And forward the message around, we will likely need tens of thousands of votes to be selected. Thanks in advance, we look forward to working with you!

keep-calm-and-vote-for-me-158

I’m normally not a big fan of citizen sciences. Because as trained scientists we strive so carefully to achieve the upmost rigour, I always have this irrational uneasiness when it comes to handling data that have been collected by thousands of uncontrolled volunteers, good-willing but sometimes scientifically unqualified. Citizen science is a great idea though. In a nutshell, it is the fact of using the network of citizen to gather simple raw data and send them to a centralizing team that will assemble it into a giga-dataset that we scientists, with our slow performing slaves, sorry students, cannot even dream of achieving on our own. That way, we can learn about the changes in arrival dates of migrating birds all over Europe, we can more quickly identify star clusters and exoplanets, or reconstruct past climates from thousands of log books of old ships.

So citizen sciences means science made from data collected by citizen. It is nice because it gives enormous datasets to scientists, but also a nice feedback to citizen: in general those implied are interested in birds, or stars, or ships, and are happy to be involved in projects and know the results on programmes in which they have contributed.

It’s a win-win situation, but I thought there could be more to gain for the citizen. This is why, in the days to come, our group – Biodiversity Dynamics – will present a new project in which citizen can do more than collect data and find out the results. Way more.

We have been awarded a grant from the Fondation BNP-Paribas to study the effects of climate change on invasive insects. If you want to know more about why insects could very well invade our regions in the near future and how this is going to be bugging, read this post. If you want to know more about which species are likely to invade where, and when, than this is for you: we will propose in this project to involve citizen in a way they have never been so far. Citizen will not collect the data here, they will instead play (some of) the scientist role: they will ask questions. That’s right. You will start by choosing (some of) the insect species that we will work on. We will propose a list of interesting cases and you will be able to select one from them. We will set up an interactive website to post our results such as distribution maps and graphs and you will also be able to ask for more (e.g., “would it be possible to model the potential distribution of invasive fire ants in England in 2050?”). If the requests are reasonable and within our reach, we will do it and post the results (with the explanations). If they are not, we will explain why (so that you can stop taking us for scientists from the TV shows and ask us irrealistic things).

There is a catch though. This “novel citizen science” project will exist only if we win the vote of the public, which will select one project over 6. I will post soon the vote links so that you can unleash the mad clicking-beast that hides in you and thus allow us to serve you better. For, always remember that, as scientists, our ultimate goal is serving Humanity.

Abby

Of course Gibbs, every scientist is like me: an expert in all possible fields that will give you awesome results within the hour

I have been working for years on biological invasions. You know, the species that are put into regions in which they don’t belong and that just expend madly and outcompete everything, unchecked. A bit like Mcdonald’s in France. Because I’ve also started working on the impact of climate change on biodiversity, I’ve naturally wondered (like many) whether climate change would affect biological invasions.

My group – Biodiversity Dynamics – has produced already some awesome work on that. For example, see here, here or here. Or here and here. Or here. Ok, I stop. You see, they produce too much, I’m not the only one to say that.

Anyways, because climate change is likely to make winters milder and habitats climatically more suitable year-round for cold-blooded animals like insects, we have been wondering whether invasive insects would be able to invade other regions with climate change. There are many very nasty bugs out there.

For example, the Asian predatory wasp is an invasive hornet in Europe that butchers pollinating insects, especially bees, thereby affecting the production of many wild and cultivated plants. And we all remember what Einstein said about pollinators: « if bees were to disappear, humans will disappear within a few years » (we all remember that because it’s one of the few things he said that we understood). The highly invasive red imported fire ant is feared for its impacts on biodiversity, agriculture and cattle breeding, and the thousands of anaphylactic shocks inflicted to people by painful stings every year (with hundreds of deaths). Between the USA and Australia, over US$10 billion are spent yearly on the control of this insect alone. The tiger mosquitoes are vectors of pathogens that cause dengue fever, of the chikungunya virus and of about 30 other viruses. And I could go on.

Most of these nasty creatures are now unable to colonize northern regions of Europe or America, or southern regions of Australia, for example, because they cannot survive cold temperatures. But how will this change? Where and when which species will invade with rising temperatures? What will be the costs in terms of species loss? In terms of agricultural or forestry loss? In terms of diseases to cattle, domestic animals and humans? What will be the death toll if insects that are vectors of malaria can establish in new, highly populated areas?

All these questions, we’ve proposed to study them from a list of 20 of the worst invasive insect species worldwide. And we got selected (ie financed), so brace yourself, we are going to provide some answers. Soon. I just need to hire a couple of postdocs first to do all the work for me.

InsectInvasion

I don’t care; I don’t like popcorn anyway