Posts Tagged ‘PhD Thesis’

I’ve heard so many times the saying that curiosity killed the cat. In French we say that quality is a naughty defect (generally to kids, in order to discourage it). That’s utter-bullshit, pardon my English. Curiosity saved men. It’s because we’re curious that we founds ways to compensate our tiny constitution, our ridiculous speed, our feeble health and so on. And it’s because we’re curious that we invented a special job: researcher. People devoted for the sole purpose of satisfying the curiosity of the society, and/or their own.

In return, the very minimum that these researchers can do, it tell the results of their investigations. Otherwise, that’s a bit unfair, no? It’s called staying in the Ivory Tower, the tower where intellectuals selfishly do their work, while staying disconnected from the society. We get paid by the society to find stuff, and we don’t tell what we find? Apart from fueling the lunatic nature of conspiracy theorists, who think every researcher in the world participate covertly to global machinations, this is just failing to do the full spectrum of our very responsibility as researchers. Every researcher should do popularization work, be it public conferences, press interviews, books or documentaries or just press release and let the journalists communicate for them. That’s the fair thing to do, and that’s also a very good exercise to be able to explain complicated concepts, and ultimately also to get more people interested in our discipline.

With that in mind, I’ve been popularizing quite a lot, since my very early carrier. I’ve written a piece about my thesis research during my first year of PhD, against the advice not to do so of my supervisor, who thought – like almost everybody else at the time – that popularization was the realm of bad scientists: those who where not sufficiently strong in research to stay with their peers went to shine with the public, pretending to be smarter than their colleagues knew them to be. Now I’ve written more, from articles to books, initiated several documentaries, participated in several others, given conferences in front of many different audiences, including about every age of school children, and interviews to radio, tv channels and written press. And apart from one or two exceptions, every single one has been a great experience.

In some countries, like my own, the public tends to think that researchers are at best immature society parasites who work on useless questions just because they can. In others, like the USA, they tend to have a better reputation, sometimes up to selfless saviors of the society. Regardless of the general view of our profession, communicating with the public is profitable for the public, is profitable for us and is profitable for our profession.

Of course, when  I say communicate to the public, don’t go telling them all everything. We want to keep all our global conspiracies safely concealed, otherwise our secret plot to take over all the governments of Earth might be delayed…

Communication

Advertisements

yes, better than Starwars and World of Warcraft together, the wars of ants. Last year in our lab, we set up wars between different species, among the most aggressive in the world.

I’m sure you can imagine. Monstrous armies of millions of Unsullied warriors, impervious to danger, dedicated to the death, working together with the efficacy given by millions of years of evolution, all entirely bent to one single purpose, destroying the other armies. I’m certain to are picturing this. Well, you are picturing it wrong, you immature brutes. So, what did we do and why did we do it?

It was a time when a Ph D student (Cleo Bertelsmeier) was studying the effect of climate change on invasive ants. I’ve told you already why we study invasive ants. If you’ve missed it, you can read it here. The first part of the PhD thesis was to build up species distribution models to try and predict where invasive ants would find favorable regions with climate change (ants are very sensitive to climate, and milder winters may mean higher probability of establishment). And the result was that some of the most problematic invasive ant species were predicted to arrive at the same place in several regions. And because the most obvious characteristics of all these invasive ants is that they are extremely efficient at removing other arthropods, starting with local ant species, we naturally wondered what would happen if two of such Hun armies were to clash in newly invaded territories. Or in other words, is there among these tiny berserk beasts one that would take over all the others (and the rest of the world with it).

So we set up colonies of four of the worst of the worst. These were the invasive garden ant Lasius neglectus, the Argentine ant Linepithema humile, the big-headed ant Pheidole megacephala and the electric ant Wasmannia auropunctata. The experiment set up by Cleo was not really the wars you pictured, but they were enough for our purposes: boxes with colonies of 300 workers and one queen, put into contact by a tiny tube, and days of counting the dead and the survivors. And these taught us a lot. First, that the experiments of one worker versus another in a Petri dish – often set up to establish dominance hierarchies among ant species – are not well suited, because some ants species need other workers to kill others. Some ants hold the enemy while it is being cut into pieces, and you can’t do that when you’re alone, and you’ll systematically lose in duels but not necessarily a battle. It also mean that classical experiments of 10 vs 10 workers in a Petri dish are also problematic, because the lack of natural conditions can bias the results. These ants are very stressed, more or less forced to fight, and with no territory, nest or queen to defend (which was not the case in our experiment). Last, it taught us that ants adapt their strategies according to their opponents. Some species that are very aggressive and kill everything were less so when confronted to potentially stronger adversaries. Some even escaped or feigned death. And some raided the other colonies D-Day style improved with chemical weaponry, with many losses but an eventual conquest while some others remained in their strongholds and privileged defense. And eventually it taught us that when you increase complexity, for example by putting all four species together, you increase… well complexity. Here, the species that systematically lost against any of the three others won half the time when all four were fighting simultaneously.

Now I’m sure you’d like to know who was the meanest of the four. The tiny electric ant, so named for its terribly painful sting? Or the scary big-headed ants, which soldiers can cut in two any of the other species? Well, I guess that to know that you’ll have to read the paper (and perhaps that one too about their strategies)… Yes, I know, I’m mean. That’s what the ants say too.

Marvel-Ant-Man-Banner-Poster

Of course, the best fighter of all remains the Ant-man

When I was a PhD student, a researcher that I admired once told me that half the research in labs is done in corridors and coffee rooms. Of course he didn’t mean that the dire restrictions of lab and office spaces faced by academia nowadays force half of us to install their benches or computers there. Even in France. What he meant was that in academia the social aspect is very important, and that social gatherings, such as coffee breaks, are not to be neglected because they are not just breaks from work and coffee loading. They are more than that. They are crucial because that’s where scientists chat. They of course sometimes chat about mundane topics, such as whether Schrödinger’s cat is male or female or both, or why 42 and not 43, or 41. But they most of the time talk about their work. Yes, most of us are in the latest stage of nerdiness and can’t be saved anymore.

And chatting about studies is really important for two things. Well, three, because it also gives you information about what the guy on the desk next to you is spending his days on (beside Facebook), which can be interesting, if not utterly fascinating (sometimes). But regarding your own research progress it’s important because it forces you to synthesize and to structure your thoughts about your work (the whole of it, or a more specific problem). This effort alone can benefit you a lot. Sometimes it will help you to get unstuck or to spot a weak link in your reasoning; sometimes it will just help you see more clearly your problem and go forward more easily. The second reason is that you can get feedback that can in many times be useful, be it from someone close to your topic or on the contrary rather remote.

With this in mind, we have set up three types of regular meetings in our group (in addition to the boring ones). The first one is the SemiBeer. We’ve talk about it here. But in a nutshell, it’s a Journal Club with two twists: 1/ we treat unconventional papers, such as funny ones, articles about controversies or papers about carrier and 2/ we drink beer (or other stuff, with peanuts and crackers, what we call apéro in France, a key cultural tradition that every other country on Earth should copy).

The second type of socio-scientific meeting is the Teameeting. That’s where we discuss problems encountered by a team member. We just gather around a table with a computer and sheets of paper and someone presents where (s)he’s stuck in her/his topic and others try to give suggestions. A brainstorming session set up at teatime, so with homemade cookies and similar goodies, hence the super pun I’m so proud of: Tea-meeting / Team-eating. Oh God, am I good when it comes to food…

The last type of meetings that we have is the Breakfast Club. As you may have guessed (I hope for you), this one is in the morning, very very early (9 am) and we discuss about carrier. Students ask a question, such as how to best find a supervisor for a PhD or how to balance work and personal life, and the postdocs and PIs give them their famed wisdom. And we eat croissants and other morning delights with tea and coffee and good ambiance.

So if I count well, we’ve been very serious scientifically, because we’ve covered breakfast, tea time and apéro. And of course everyday we all have lunch together at the canteen of the university. Now I just need to do something about Elevenses, and we’d be one step closer to the Hobbits.

LabFoodYes, that’s my lab and yes I told them not to eat while doing experiments

 

A previous postdoc of mine just asked me to post a blog article on how I manage my time. I chose to think that this was meant to be for an advice, rather than for things to avoid.  So there it is: how do I do everything I do in research, while also spending considerable amount of time having a family, running long-distance and playing World of Warcraft, all four of which being notoriously time-consuming.
Researchers are now expected to spend time for (and be good at) a large number of various tasks, often requiring totally different skills, including doing research, writing articles about it (well, and a lot), speaking at scientific congresses but also for at public conferences, popularizing in various formats (written, interviews, etc), networking with colleagues, communicating with journalists and stakeholders, finding, securing and managing grants, acting as an editorial member and a reviewer for several scientific journals, evaluating colleagues, students and grants in juries and committees, teaching various classes, supervising internships, mentoring graduate students and directing postdocs (which is quite different), and sometimes heading a group of research. And if time allows, going to pee every other day.

 

Multitasking_Done_Wrong
So how do I fit all this into my days? Come to think of it, I don’t have a carefully designed strategy, but over the years I have naturally developed a way of working that allows me to cram in quite a lot.  Here are a few things that I do that help me manage.
First of all, I manage my tasks; I set up priorities. Everyday I have a list of things I have to finish by the end of the day, and while being realistic (otherwise it’s useless), I try to have an ambitious list, and to finish it every day (otherwise it’s useless). So I put in this lists the urgent tasks, those that can’t be further pushed away, plus the important ones that still can fit.
Then, I play Tetris with my priorities: I try to tightly fit various tasks into time holes of the corresponding time and concentration need. If I just spent four hours focusing on a manuscript, I’ll respond to some emails that don’t require a sharp brain, or I’ll browse the Internet for some fitting illustrations for an upcoming talk. If I just have half an hour left before leaving, I’ll find a task that takes me 40 min, and do it more efficiently. Or two tasks of 15-20 min, but I’ll try not to let gaps, unless purposely. And that’s the second point.
Staying efficient. I’m lazy, and I don’t want to spend more time than necessary on things, so I do them as efficiently as I can (because I’m also perfectionist and I don’t want to make them bad). And of course, being efficient is tiring, if you give yourself 100%, then you burn energy, even sitting at your desk. So in addition to managing my tasks and my time, I manage my energy and my motivation. Because without one or the other, you’ll achieve nothing, or at least nothing efficiently. And in the long term, you’ll get a burnout (see my post here about that).
Managing your energy is crucial. The more and the harder you work, the less effective you become, and the more you need to take breaks – either during the days or during the week (or the year). So this may seem like GrandMa’s advices, but you need to sleep well (there are many studies on the effect of one more hour of sleep on work efficiency), to eat well and to rest (your brain) well. That is one of the reasons why I take my whole group to the staff restaurant every lunch so that we can all have a large break at mid day. Plus the food is good there (and remembers, that’s France: while humans eat to live, we live to eat).
When asked to present the distribution of his different research activities, I remember a colleague and friend of mine giving percentages of various tasks, and when I mentioned that the sum was over 100%, he simply answered that he worked longer than 100% of a normal day. That can work, but I think a more efficient (and pleasant) way is to know when you get tired and less sharp, and stop to rest. It’s way better to work 8 hours fully (with breaks) than 6 hours fully without, followed by 3 hours at 50% speed and 3 hours at 25% speed. You’ll achieve less in the end, and will have spent more time, be less rested or entertained and in the end, you’ll like your work less. Rest a lot so that when you work, you can work at 100%. You must remain driven, never dragging.
When I say rest between tasks during the day, you can do like most of my San Diego lab pals when I was in postdoc, play ball in the yard (or go surfing, but that’s not easy here in Paris); you can do like my grand father, who in his time got the world record of criminal case solving by taking a 5 minutes nap twice a day; you can goof off on Facebook, clean up the coffee room, go hunt a roller blader, you can do whatever you find most resting, provided it works for you (and it’s not illegal (or you don’t get caught)).
And last bit of advice: manage your motivation as well. If you have a task that is boring you or that you don’t like, procrastinate a bit. Push it back if you can and do things that are more motivating until either you can’t push it back further, or you have enough motivation/energy to do it.

 

Multitasking
A happy researcher must have three things full at all time: daily planning, energy level, motivation level. Too often they also have a full bladder, but that’s just bad managing. Now I’ve spent a good hour writing this page; remember I told you to alternate hard work and rest/fun. Time for a quick run then…

You want personal? I give you personal. My year in California; it will be the year of many things, but it will definitely be the year of trying triathlon. Of tri-ing.
I started with an experience in the three sports amounting to only a poor 8 months of running. No swimming (ever, I didn’t even know how to). No biking (ever, I didn’t even have a bike). No idea whatsoever of what a transition is, or why three sports in a row is so much more difficult than the mere sum of the three.

That was a big challenge, but I was there for the challenge. Otherwise I wouldn’t have picked the university team that was (and remained) the USA champions (UCLA Triathlon). An amazing team that awed me and inspired me, but that also made me feel ridiculously slow, fat, old and generally unfit. Because triathlon is everything but easy. Oh, yes, I have sweated, I have bled, I have ached and moaned. I have discovered what it means to be so oxygen deprived that even clutching the pool side I couldn’t catch up my breath and was slowly drifting into both asphyxiation and panic. I have seen people faint and collapse around me during races and wondered whether I was next. I now know what it’s like to see white spots while swimming, to feel lost in the ocean, to feel unable to climb further up a slope, to run for hours on giant blisters, to keep going even as darkness pulls around, to puke on the side of the road or to stay awake all night long with a body full of hormones and pains after a race.

I have lost sleep; I have lost weight; I have lost toenails; I have lost pride; but I have never lost focus nor courage. I never gave up, even when the rest of the team was so effortlessly losing me in swims, in rides and in runs. Even when my highest achievements were dwarfed by the lowest of theirs. I have found determination, I have found strength in my microscopic progresses. I have found sound advice and kind encouragement. I have found a coach, and mentor and a team.

And I have found pleasure. I have found pleasure in progressively feeling stronger, faster, tougher, more enduring. And I have found pleasure in fighting my fears, in overcoming my limitations, in pushing my limits, in never, ever giving up. I found pleasure in stringing races, in running in Death Valley, in biking with Marines, in passing so many racers in the ocean. I come back to France having now run 7 half-marathons, three marathons and four triathlons, many in difficult conditions. I was pleased to finish within the first 20% racers at my last semi-marathon, which was one week after my last triathlon, itself 5 days after my last marathon. My overall feeling is that although I have never been skilled, I have pushed myself, and never failed.

So, this is supposed to be a blog somehow related to scientific research?! WTF? Ok, here’s the message. First, research is relatively easy; even a PhD is relatively easy. Believe me. There are much harder endeavors, stop complaining if you are. Second, whatever your goals, you can reach them if you put your mind into it. Nothing is out of your reach. If you don’t push away your limits, you’ll remain limited. Third, hard work, tenacity, courage and strength of will can go a long way towards compensating lack of skills or other disadvantages in our academic world (such as being young, being a woman or being a non-English speaker). Last, even difficult, painful, long endeavors can provide pleasure, sometimes just because you managed to overcome the obstacles you once believed to be insuperable.

Now, that’s done; Note to self: second step, give this text to my PhD just before I give them some additional, hard work.

funnyt_08

 

In a very interesting Science article a few weeks ago, Georgina Mace highlighted how Conservation Biology has been going through phases in the way of seeing the conservation of nature. There are many interesting aspects to this paper, starting by the evolution of the place of people in conservation: nature for itself, nature despite people, nature for people and then nature and people. An aspect that interests me a lot and that has been the focus of much debate in the past is whether we should maintain theses species oriented conservation programmes, when what really matters is habitats, or ecosystems. True, conserving species is meaningless if they don’t have a habitat to live in. Also, conserving ecosystems allows to protect many, many species together, as well as the processes and interactions among them. Plus, money is a finite resource, so conserving species per species means choosing which ones are going to be the target of conservation programmes, and which ones are going to be let for extinction; a modern version of war-wounded triage.

This prompted a famous naturalist to call for the end of pandas, because we are wasting millions of conservation money on them, probably hopelessly, while those millions would better serve entire communities of (less charismatic) species. Dude, he even said that he would eat the last panda if he could have back the money spent on them, to use for more sensitive purposes. Despite the questionable culinary taste (the guy is British), he has a very valid point. The only reason the pandas are getting so much money for conservation, despite being probably doomed since decades, is that they are cute, large mammals. They rock, so we can’t really abandon them, can we? Or at least we can’t appear like we’ve not attempted everything, even if it means performing mouth-to-mouth resuscitation attempts for thirty more years? Nah. Those millions could have already saved species that stand a chance, or protect entire biodiversity hotspots.

PandasRock

You can’t deny that pandas rock

 True. But there is another aspect to this problem, that I never see pointed out but that I consider essential emphasizing. Pandas rock. (yeah, I know I said it already). Therefore, people love them. They watch vines of them sneezing adorably on their babies or crashing stupidly from slides, they make funny commercial, video games and cartoons out of them or even disguise their dogs in panda-looking absurdities. And because of that, people don’t want to see them erased from the surface of the Earth. And I don’t blame them, even if pandas have become too lame to reproduce. People don’t want to give up this lost fight, because people care (a tiny bit) about Nature and biodiversity. And people care (a tiny bit) because they had a strong symbol in front of them. Had the WWF given them a slug or a spider as a symbol, I doubt it would have worked as well. Had they rather chosen as a symbol the beautiful hilly bamboo forests that are the habitat of pandas, people wouldn’t even have looked up from their smart phone for a second. The panda raises awareness. It plays a crucial role in conservation, and is it therefore justified to spend millions to save it. And to advertise this expenditure broadly.

So you see, it’s true that it’s unfair that charismatic species get most of the attention in Conservation Biology, but we still need to realise that if it weren’t for pandas, tigers, gorillas and dolphins, nobody would give a damn (even a tiny bit) about conserving nature. That’s life. Just like the pretty cheerleaders are the only reason Europeans could ever be interested in American Football. Unfair, but sheer reality.

I’m normally not a big fan of citizen sciences. Because as trained scientists we strive so carefully to achieve the upmost rigour, I always have this irrational uneasiness when it comes to handling data that have been collected by thousands of uncontrolled volunteers, good-willing but sometimes scientifically unqualified. Citizen science is a great idea though. In a nutshell, it is the fact of using the network of citizen to gather simple raw data and send them to a centralizing team that will assemble it into a giga-dataset that we scientists, with our slow performing slaves, sorry students, cannot even dream of achieving on our own. That way, we can learn about the changes in arrival dates of migrating birds all over Europe, we can more quickly identify star clusters and exoplanets, or reconstruct past climates from thousands of log books of old ships.

So citizen sciences means science made from data collected by citizen. It is nice because it gives enormous datasets to scientists, but also a nice feedback to citizen: in general those implied are interested in birds, or stars, or ships, and are happy to be involved in projects and know the results on programmes in which they have contributed.

It’s a win-win situation, but I thought there could be more to gain for the citizen. This is why, in the days to come, our group – Biodiversity Dynamics – will present a new project in which citizen can do more than collect data and find out the results. Way more.

We have been awarded a grant from the Fondation BNP-Paribas to study the effects of climate change on invasive insects. If you want to know more about why insects could very well invade our regions in the near future and how this is going to be bugging, read this post. If you want to know more about which species are likely to invade where, and when, than this is for you: we will propose in this project to involve citizen in a way they have never been so far. Citizen will not collect the data here, they will instead play (some of) the scientist role: they will ask questions. That’s right. You will start by choosing (some of) the insect species that we will work on. We will propose a list of interesting cases and you will be able to select one from them. We will set up an interactive website to post our results such as distribution maps and graphs and you will also be able to ask for more (e.g., “would it be possible to model the potential distribution of invasive fire ants in England in 2050?”). If the requests are reasonable and within our reach, we will do it and post the results (with the explanations). If they are not, we will explain why (so that you can stop taking us for scientists from the TV shows and ask us irrealistic things).

There is a catch though. This “novel citizen science” project will exist only if we win the vote of the public, which will select one project over 6. I will post soon the vote links so that you can unleash the mad clicking-beast that hides in you and thus allow us to serve you better. For, always remember that, as scientists, our ultimate goal is serving Humanity.

Abby

Of course Gibbs, every scientist is like me: an expert in all possible fields that will give you awesome results within the hour