Archive for October, 2014

The Fundation BNP Parisbas selected 5 scientific programmes on climate change and will give 50 000 € (that’s US$ 62,000) to one selected by the public, for a communication project on their scientific programme. This is why we need you to vote for our project: InvaCost.

InvaCost will look at the impact on invasive insects, when climate change allows them to invade regions that are now too cold for them, but that will warm up in the coming decades. These include the red imported fire ant, the predatory Asian wasp, the disease carrying tiger-mosquito, and many others that are among the worst invaders worldwide. InvaCost is described a bit in an earlier post, here.

Our communication project is really different from anything that has been done before, and very probably different from the four other projects. In addition to building an interactive website to communicate with the public, show and explain our results and answer your questions, we will inaugurate a new type of citizen science, or participatory science: the public will be able to select some of the 20 invasive species we will study in InvaCost, from a large list we will compile. You will also be able to ask us to do specific analyses, for example “will Argentine ants be able to invade the UK?” or “where will the Formosan termite invasion expand in the USA” or “Is the malaria mosquito likely to reach my city and when?”. We will then collect the data, build and run the mathematical models, analyse the outputs and show and explain the results.

In a word, you will chose the subject and the questions, and we will do science for you. The money will be used to design and run the web site and to hire staff to interact with the public and make specific analyses during the four years of InvaCost. The communication project is described here.

So if you want to see that happen, it’s quite simple, vote for our project, by going here. And forward the message around, we will likely need tens of thousands of votes to be selected. Thanks in advance, we look forward to working with you!


I’m normally not a big fan of citizen sciences. Because as trained scientists we strive so carefully to achieve the upmost rigour, I always have this irrational uneasiness when it comes to handling data that have been collected by thousands of uncontrolled volunteers, good-willing but sometimes scientifically unqualified. Citizen science is a great idea though. In a nutshell, it is the fact of using the network of citizen to gather simple raw data and send them to a centralizing team that will assemble it into a giga-dataset that we scientists, with our slow performing slaves, sorry students, cannot even dream of achieving on our own. That way, we can learn about the changes in arrival dates of migrating birds all over Europe, we can more quickly identify star clusters and exoplanets, or reconstruct past climates from thousands of log books of old ships.

So citizen sciences means science made from data collected by citizen. It is nice because it gives enormous datasets to scientists, but also a nice feedback to citizen: in general those implied are interested in birds, or stars, or ships, and are happy to be involved in projects and know the results on programmes in which they have contributed.

It’s a win-win situation, but I thought there could be more to gain for the citizen. This is why, in the days to come, our group – Biodiversity Dynamics – will present a new project in which citizen can do more than collect data and find out the results. Way more.

We have been awarded a grant from the Fondation BNP-Paribas to study the effects of climate change on invasive insects. If you want to know more about why insects could very well invade our regions in the near future and how this is going to be bugging, read this post. If you want to know more about which species are likely to invade where, and when, than this is for you: we will propose in this project to involve citizen in a way they have never been so far. Citizen will not collect the data here, they will instead play (some of) the scientist role: they will ask questions. That’s right. You will start by choosing (some of) the insect species that we will work on. We will propose a list of interesting cases and you will be able to select one from them. We will set up an interactive website to post our results such as distribution maps and graphs and you will also be able to ask for more (e.g., “would it be possible to model the potential distribution of invasive fire ants in England in 2050?”). If the requests are reasonable and within our reach, we will do it and post the results (with the explanations). If they are not, we will explain why (so that you can stop taking us for scientists from the TV shows and ask us irrealistic things).

There is a catch though. This “novel citizen science” project will exist only if we win the vote of the public, which will select one project over 6. I will post soon the vote links so that you can unleash the mad clicking-beast that hides in you and thus allow us to serve you better. For, always remember that, as scientists, our ultimate goal is serving Humanity.


Of course Gibbs, every scientist is like me: an expert in all possible fields that will give you awesome results within the hour

I have been working for years on biological invasions. You know, the species that are put into regions in which they don’t belong and that just expend madly and outcompete everything, unchecked. A bit like Mcdonald’s in France. Because I’ve also started working on the impact of climate change on biodiversity, I’ve naturally wondered (like many) whether climate change would affect biological invasions.

My group – Biodiversity Dynamics – has produced already some awesome work on that. For example, see here, here or here. Or here and here. Or here. Ok, I stop. You see, they produce too much, I’m not the only one to say that.

Anyways, because climate change is likely to make winters milder and habitats climatically more suitable year-round for cold-blooded animals like insects, we have been wondering whether invasive insects would be able to invade other regions with climate change. There are many very nasty bugs out there.

For example, the Asian predatory wasp is an invasive hornet in Europe that butchers pollinating insects, especially bees, thereby affecting the production of many wild and cultivated plants. And we all remember what Einstein said about pollinators: « if bees were to disappear, humans will disappear within a few years » (we all remember that because it’s one of the few things he said that we understood). The highly invasive red imported fire ant is feared for its impacts on biodiversity, agriculture and cattle breeding, and the thousands of anaphylactic shocks inflicted to people by painful stings every year (with hundreds of deaths). Between the USA and Australia, over US$10 billion are spent yearly on the control of this insect alone. The tiger mosquitoes are vectors of pathogens that cause dengue fever, of the chikungunya virus and of about 30 other viruses. And I could go on.

Most of these nasty creatures are now unable to colonize northern regions of Europe or America, or southern regions of Australia, for example, because they cannot survive cold temperatures. But how will this change? Where and when which species will invade with rising temperatures? What will be the costs in terms of species loss? In terms of agricultural or forestry loss? In terms of diseases to cattle, domestic animals and humans? What will be the death toll if insects that are vectors of malaria can establish in new, highly populated areas?

All these questions, we’ve proposed to study them from a list of 20 of the worst invasive insect species worldwide. And we got selected (ie financed), so brace yourself, we are going to provide some answers. Soon. I just need to hire a couple of postdocs first to do all the work for me.


I don’t care; I don’t like popcorn anyway

Yesterday was the first day of the fall quarter for about 35 000 students at UCLA. And I thought the campus was impressive before. It is now… intimidating, with all these new guys around. Looks like a Parisian metro with a crowd wearing flip-flops and sunglasses. Chatting with a student today, I realised that many of the first-year have no clue about the type of studies they want to do. If you are in this case, here, this post is for you.

I am sure pretty much anything is interesting to study, from arts to sports and history, to economics and to science. But studying is – unfortunately – not an end per se. You need to get knowledge to get a job. And you wouldn’t want to end up in a looser job like banker or lawyer. I mean, a job in which you realise at the end of your life that, although you’ve made big money allowing you to wear a Rolex (that will only impress other bankers and lawyers), the purpose and meaning is essentially artificial and inexistent. (wink to my few friends in these branches; for the others, well sue me!).

You could study art, sport, history or economics, but of course it is much less rewarding than science. And in science, let’s face it, you don’t want to become a friend of Sheldon Cooper, so you can rule out physics. All the other disciplines are obviously rather useless. What would you do with maths, now that there are calculators on Iphones? What would you do with chemistry, apart from  polluting our environment and our bodies? What would you do with medicine, apart from repairing the mistakes of the chemists? Nah, really, the only option that makes sense is the study of the functioning of our planet and of the beautiful, unfathomed depths of biodiversity: ecology.

Ok, perhaps I’m hinging a bit too much towards the ironic side, but if you think about it, it does kind of make sense. We need ecology more than ever. And not only because of the dire challenges that humanity faces in its damaged environment. Just because we still know too little about where we live. Let’s take Panthera leo, the lion. The king of animals. The iconic, charismatic species that is on every logo, blazon, story and cartoon all over the world. Do you know what we know about lions? Not much. We don’t even know how many lions there are on Earth! We know how many stars are in our galaxy, we know how many neurons are in our brains, we know how many consumers will buy any new product before they do. But the best specialists simply don’t have enough data to know how many lions there are. Needless to say we know little about all the other species, apart from a few. Hell, we don’t even know how many species there are on Earth! Not by an order of magnitude!

So, we really could use a hand (and a brain) there. Come do some ecology, String Theory can wait…